

This project has received funding from the European Union’s Seventh Programme for research,
technological development and demonstration under grant agreement No 603843

ResCoM D5.1 Initial Standard Data Model

Eurostep

29-9-2014

 II

Contents

1 Introduction .. 3

1.1 Overview of PLCS ... 3
1.2 ResCoM initial standard data model ... 4

1.2.1 Objective and scope .. 4
1.2.2 Method ... 4
1.2.3 Roles of ResCoM initial standard data model .. 5

2 Initial standard data model description ... 7

2.1 The bases of the initial standard data model .. 7
2.2 SysML block definition diagram .. 8
2.3 ResCoM_ProductRCBreakdown_and_Design ... 9
2.4 ResCoM_Requirements .. 14
2.5 ResCoM_InLife ... 17
2.6 ResCoM_Activities_and_Methods model ... 20

3 Conclusion ... 26

References .. 28

Annex - SysML block definition diagram introduction

This project has received funding from the European Union’s Seventh Programme for research,
technological development and demonstration under grant agreement No 603843

1 Introduction
This deliverable is a documented domain information model based on ISO 10303-239 and
OASIS PLCS ed. 2 standard supporting the envisioned ResCoM processes and information. It
also includes both defined terminology and UML class diagrams defining the used information
structures [1].

1.1 Overview of PLCS
ISO 10303-239 (PLCS) [2] represents the information needed to operate and maintain a product
during its entire life, from initial concept to disposal, as it evolved in an environment containing
heterogeneous organizations, processes, and IT systems set required to support a product [3].

The development of PLCS was driven by the exploitation of aftermarket opportunities. A
coherent information environment in which the necessary data are available to all participating
actors is a prerequisite for efficient product support. PLCS can be thought of as a new “world
map” for product support. PLCS has three main components [4]:

• A business vision (Figure 1-1), outlining the vision is to a single source of truth for
assured product and support information for use across the enterprise.

Figure 1-1. The PLCS vision

• An activity model [5], comprising a coherent set of processes which support continuous
optimization over the full product life cycle - from product requirements to product
disposal.

• An information model [6], specifying an information environment for the integration and
exchange of the data that are required by the processes described in the activity model.

 4

Figure 1-2. The key concepts in the PLCS information model

The central concepts in PLCS (Figure 1-2) are: product, activity, and resource. Each of
them may be associated with properties, states, or locations. Conditions may be applied
to relationships between these concepts.

1.2 ResCoM initial standard data model

1.2.1 Objective and scope
Eurostep is developing the Share-A-space server solution for secure PLM collaboration. The
ResCoM project will develop it further to support closed loop multi life cycle applications. Share-
A-space is based on the ISO 10303 (i.e. ISO 10303-214 Automotive Design, ISO 10303- 239
Product Life Cycle Support and ISO 10303-233 System Engineering). Among those standards
Product Life Cycle Support (PLCS) and System Engineering [7] are considered as the
foundations of the ResCoM collaborative software platform.

ResCoM prospects a new business opportunity which could benefit both the enviroment and
economy. One the other hand, it puts increasing requests on managing information throughout
the complete product multiple lifecycles. The objective of the work described in this document is
to provide a simplified AP233/239 based data model extended with semantics from the closed
loop and multiple lifecycles area to support closed loop multiple lifecycle products. The model
will be validated using Share-A-space and industrial test cases.

1.2.2 Method
The initial data model is modelled by utilizing methodologies and tools developed and used in
the support of products with a linear life cycle. In the context of ResCoM firstly we extracted the
main ResCoM concepts and product requirements from the anterior ResCoM work e.g. Asif [8],
Rashid et al. [9], DOW [1], D2.1 [10], D2.2 [11], D2.3 [12] and D3.2 [13]. A generic activity model
was then defined to identify what and how the closed-loop production activities should be carried
out and integrated throughout the product’s multiple lifecycles. The activity model will be
continuously updated according to the up-to-date research results from WP2, WP3, WP4, and
WP6. This ResCoM generic activity model is designed to be extended and tailored for use in
different cases (in ResCoM project, different cases means the four cases from OEMs). The
generic activity model is modelled in [14], though it is not an element of this deliverable, it
provides a good basis for defining processes (which provide the context of data) and
responsibilities within organizations and in the ResCoM collaborative closed-loop production
hub.

Accordingly the ResCoM initial data model i.e. the domain information model is created, which is
specifying an information environment for the integration and exchange of the data that are
required by the processes described in the ResCoM generic activity model. The generic

 5

concepts presented in the data model are influenced by the ISO/STEP PLCS and Systems
Engineering standards. The initial standard data model is also a generic model which is
applicable to the four industrial cases of ResCoM project, and even applicable to future products
which are designed based on the ResCoM methodologies. The data model is divided into four
distinct domains domains in order to cover all ResCoM relevant processes and information,
each focusing on different aspect of the model. Each of the four domains is represented by one
SysML block definition diagram:

• ResCoM_ProductRCBreakdown_and _design
Concepts and properties for representing the product lifecycles including their
relationships.

• ResCoM_Requirements
Various types of ResCoM product specific requirements including their traceability and
structure.

• ResCoM_InLife
Multiple lifecycles design, lifecycles definition and predefined product structure of each
lifecycle for specific manufactured products.

• ResCoM_Activities_and_methods
Activities for closing the loop of the product system and supporting multiple including
predefined activity methods for supporting first manufacturing activities (such as design)
as well as operational value recovery methods in each of its end of lifecycle taking into
account plan and execute manufacturing and operational value recovery specific product
individuals.

Roles of ResCoM initial standard data model
The development processes of ResCoM collaborative software platform are shown in Figure 1-3.

Figure 1-3. Development processes of ResCoM collaborative software platform

 6

ResCoM standard data model aims to specify an information environment for the integration and
exchange of the data that are required by the processes described in ResCoM requirement
framework. The intended use of the initial standard data model is first to provide a basic
framework as a support for collecting further ResCoM requirements on multiple lifecycles
product management from other three pillars (i.e. product design, business model, and supply
chain). Along with the research of the ResCoM project, the information on integrating and
exchanging data required by the processes of close-loop production will be progressively
identified by the three pillars, which will be used for extending and refining this initial standard
data model.

Secondly, the initial standard data model is the basis of the ResCoM collaborative software
platform development, including ResCoM Web API, and Share-A-space solution for managing
product having multiple lifecycles. ResCoM initial standard data model is modelled to represent
all the entities/objects and their relationships which are needed to be managed in Share-A-
space to support the complete lifecycles of the RCP (Resource Conservative Product). It will be
validated using Share-A-space and industrial test cases.

This will be an iterative process and when final closed loop information management
requirements are set, the profile will be updated and ready (D5.2 Final standard data model) for
communicate with the OASIS and ISO standards. The information ready for standardization will
include activity models giving context to the standard proposal, vocabulary (taxonomy)
establishing a semantic base for the information management in this area and information
models including utilized reference data.

This project has received funding from the European Union’s Seventh Programme for research,
technological development and demonstration under grant agreement No 603843

2 Initial standard data model description
2.1 The basis of the initial standard data model
The bases of the initial standard data model includes two parts: concepts of the ISO/STEP
PLCS and Systems Engineering standards, and concepts of ResCoM.

The generic concepts of the model are influenced by the ISO/STEP PLCS and Systems
Engineering standards. The following main concepts, which are outlined in the PLCS concept
model (Figure 2-1), influence the ResCoM initial standard data model [15]:

Figure 2-1. PLCS concept model

However, ResCoM initial standard data model must support the envisioned ResCoM processes
and information. Thus, it also adds semantics from the closed-loop production and multiple
lifecycles area. For the initial standard data model, the task is how to represent the following
ResCoM concepts/terminologies (from [1] [8] [9] [12]) in the data model:

• ResCoM specific product requirement [1]
o Sustainability baseline: LCA value decides the optimum number of product

lifecycles
o Closing the loop: business requirements, product design requirements, supply

chain requirements, information technology requirements
o Interaction among the factors of the requirements

• Multiple lifecycles design

 8

o RCP: Resource Conservative Product (labelling the product as a RCP brand) [1]
[8] [9]

o RCL (Resource Conservation Level) [1] [8] [9]
§ Optimum number of lifecycles (product-level, component-level)
§ Predetermined length (time or performance) of each lifecycle

(predefined lifecycle plan for supporting each lifecycle)
§ RCLi: Resource Conservation Level, where i = 0,1,2…RCL0 represents

RCP in its 1st, 2nd, 3rd…designed lifecycles
o Material indexes [1]

§ MCI: material criticality index
§ MRI: material recyclability index

o Product/component indexes [1]
§ CRI: component reusability index
§ PMI: product modularity index
§ PUI: product upgradability index
§ PRI: product reusability index
§ EPI: EoL potential index

• Processes to closing the loop [12]
o Manufacturing
o Distribution
o Core collection
o Operational value recovery
o Redistribution
o In-service

• Individual product management [12]
o Identification of an individual product during its multiple lifecycles
o Traceability of the product changes during multiple lifecycles
o How to represent the RCLi relationships of an individual product

2.2 SysML block definition diagram
The initial standard data model is modelled by using SysML (Systems Modelling Language)
block definition diagram. SysML is a general purpose graphical modelling language for
specifying, analysing, designing and verifying complex systems that may include hardware,
software, information, personnel, procedures and facilities. It is a subset of the UML (Unified
Modelling Language) with extensions (e.g. requirements, parametrics, item flows etc.). The
SysML block definition diagram is based on UML class diagram, and describes the structure of a
system by showing the systems classes, their attributes (part property, reference property, value
property), and represents the relationships among the classes, e.g. specialization and
generalization, association, aggregation, and composition. Before you start reading the initial
standard data model in this document, the “SysML block definition diagram introduction”
(extracted from the book ‘SysML for Systems Engineering’ of Jon Holt and Simon Perry) in the
Annex is recommended to read.

A system typically has a number of SysML block definition diagrams – not all classes (i.e.
blocks) are inserted into a single SysML block definition diagram. A class (i.e. block) can have
multiple levels of meaning and participate in several SysML block definition diagrams. The initial
standard data model is divided into four distinct domains, and each of them focuses on different
aspect of the model and is represented by one SysML block definition diagram:

• ResCoM_ProductRCBreakdown_and _Design

 9

o The identification and composition of a design from a multiple lifecycles
viewpoint.

o The definition of product configuration.
o The identification of a breakdown from a multiple lifecycles configuration

management viewpoint.
o The definition and composition of RCLs and their realizations to designs.

• ResCoM_Requirements
o The identification and composition of product requirements of the ResCoM

product specific requirements.
o The definition of verifications and their applicability to design and verify

requirements of a design.
o The identification of evidences that support the verifications.

• ResCoM_InLife
o The identification and composition of serialized assets throughout their multiple

lifecycles.
o The capture of feedback on the usage and condition of a product.
o The realization of serialized assets to product designs and RCLs.

• ResCoM_Activities_and_Methods
o The identification and composition of activities which are required for closing the

product system.
o The methods, planning and scheduling of such activities.
o The objects that the methods perform on.

2.3 ResCoM_ProductRCBreakdown_and_Design
The ResCoM_ProductRCBreakdown_and_Design model in Figure 2-2 captures the essential
concepts and properties for representing the design of multiple lifecycles products, the product
lifecycles definitions i.e. RCL definitions, as well as defines the relationships between the
concepts.

 10

Figure 2-2. ResCoM_ProductRCBreakdown_and_Design as a SysML block diagram

The ResCoM_ProductRCBreakdown_and_Design model concepts, relationships and properties
are described in Table 1.

Table 1. The concepts, relationships and properties of the
ResCoM_ProductRCBreakdown_and_Design model

Block / Relationship Description Concept reference

Block:

ResourceConservativeBreakdown

A ResourceConservativeBreakdown
provides a mean to subdivide a RCP
(Resource Conservative Product) into a
set of related RCLs (Resource
Conservative Levels) to which additional
information can be attached. This usually
takes the form of a tree.

• ResCoM: RCP [1]
• PLCS: Breakdown [2]

Block:

ResourceCoversativeBreakdownContext

Membership relationship between
ResourceConservativeLevelDefinition and
ResourceConservativeBreakdown of
which the definition is a member.

• PLCS:
BreakdownContext,
Effectivity and
EffectivityAssignment [2]

Relationship:

rcBreakdown

An association represents that at least one
ResourceConservativeBreakdownContext
is associated to one
ResourceConservativeBreakdown.

Block:

ResourceConservationLevelDefinition

Identification of RCL definitions i.e.
lifecycles definitions of a RCP.

• ResCoM: RCL [1]
• PLCS: PhysicalElement

[2]

 11

Relationship:

rclDefinition

An association represents in each
ResourceConservativeBreakdownContext
one ResourceConservativeLevelDefinition
(i.e.RCL) will be defined.

Block:

LifecyclePeriod

Predefined length (time or performance) of
a RCL, which is a Property of RCL.

• ResCoM: Predefined
length [9]

Relationship:

predefinedPeriods

A composition represents one
ResourceConservationLevelDefinition
defines at least one LifePeriod.

Block:

RCLDefinitionStructure

Relationship between a
ResourceConservativeLevelDefinition and
a RCLElement where RCLElement is
regarded as a child.

• PLCS:
PhysicalElementUsage,
Effectivity and
EffectivityAssignment [2]

Relationship:

lifecycle

An association represents that in one RCL
there will be at least one
RCLDefinitionStructure.

Block:

RCLElement

A basic element of a
ResourcConservationLevelDefinition that
represents a physical sub part (module or
component) of RCP.

• ResCoM: Module [12]
• PLCS: PhysicalElement

[2]

Relationship:

element

An association represents that one
RCLDefinitionStructure consists of at least
one RCLElement.

Block:

RCLElementStructure

Relationship between a parent and child
RCLElement.

• PLCS:
PhysicalElementUsage,
Effectivity and
EffectivityAssignment [2]

Relationship:

child, parent

Associations between RCLElement and its
constituent lower level RCLElement.

Block:

DesignItem

An abstract class. The identification of a
design, a generalization of the design
objects. It is a collector of data common to
all revisions of the DesignItem.

• PLCS: Product [2]

Block:

DesignStructure

Relationship between a parent and child
DesignItem

• PLCS:
NextAssemblyViewUsage
, Effectivity and
EffectivityAssignment [2]

Relationship:

child, parent

Associations between DesignItem and its
constituent lower level DesignItem.

Block:

ProductConfiguration

The identification of a product concept
(multiple lifecycles design) as a
configuration.

• ResCoM: Standardization
and Compatibility,
upgradability and
adaptability [12]

• PLCS:
ProductConfiguration [2]

Relationship:

design

An association represents that one
ProductConfiguration is associated to zero
or one DesignItem.

Relationship:

ofProduct

An association represents that one
ResourceConservativeBreakdown is a
breakdown of one ProductConfiguration
(product concept).

 12

Block:

ProductDesign

Specialization of DesignItem that collects
the definitional information of the versions
of a product.

• ResCoM:
Product/component
indexes [1]

• PLCS: Part [2]

Block:

Material

Specialization of DesignItem that collects
the definitional information of the versions
of a non-countable material.

• ResCoM: Material
indexes [1]

• PLCS: Part [2]

Block:

Substance

Specialization of DesignItem. • ResCoM: Conformity to
legislation [12]

• PLCS: Part [2]

Relationship:

Specialization

Note: a child block will inherit any
properties that its parent block has, but
may have additional properties that
make the child block special.

A specialization where DesignItem is
parent block and ProductDesign, Material,
and Substance are child blocks. It
represents that one DesignItem could
have three types which are
ProductDesign, Material, and Substance.

Relationship:

material

An association represents one
ProductDesign is associated with at least
one Material.

Relationship:

substance

An association represents one
ProductDesign is associated with zero or
more Substance.

Block:

RCLElementToDesign

Relationship between a RCLElement and
a ProductDesign that is realized by the
element.

• PLCS:
BreakdownElementReali-
zation, Effectivity and
EffectivityAssignment [2]

Relationship:

rclElement

An association represents one
RCLElementToDesign is associated with
one RCLElement.

Relationship:

productDesign

An association represents one
RCLElementToDesign is associated with
one ProductDesign.

Property Description Comment

Parts

ids : Identifier [1..*] A set of Identifiers for the
ResourceConservativeBreakdown/

ResourceConsercationLevelDefinition/
RCLElement/ProductConfiguration/
DesignItem.

An identifier provides the
identifying code for the
product data.

Values

name : String [0..1] A name provides the identifying name
in terms of String for the
ResourceConservativeBreakdown/

ResourceConsercationLevelDefinition/
RCLElement/ProductConfiguration/
DesignItem.

description : String [0..1] A set of text based descriptions of the
ResourceConservativeBreakdown/

ResourceConsercationLevelDefinition/
RCLElement/ProductConfiguration/
DesignItem.

 13

version : String [1] A version identifies a version of a
ResourceConservativeBreakdown i.e.
a RCP.

A version serves as the
collector of the data
characterizing a realizable
object in various application
contexts. version : String [1..*] A version identifies a version of

ResourceConsercationLevelDefinition/
RCLElement/DesignItem.

startDate : date_time [0..1] A date is assigned to a
relationship/structure between two
objects showing when this
relationship/structure begins.

Relationship/structure
between:

• ResourceConservativeBreak-
down and

ResourceConservationLevel-
Definition

• ResourceConservationLevel-
Definition and RCLElement

• RCLElement and its sub
parts

• RCLElement and
ProductDesign

• DesignItem and its sub parts

endDate : date_time [0..1] A date is assigned to a
relationship/structure between two
objects showing when this
relationship/structure ends up.

optimumNumberOfLifecycles : integer
[1..*]

The optimum number of lifecycles of
defined for a
ResourceConservativeBreakdown
(RCP) /DesignItem.

ResCoM concept [1]

unit : String [1] A LifecyclePeriod is specified by a
value and a unit.

value : Real [1]

quantity : Real [1] The quantity of a child DesignItem
constitutes its parent DesignItem.

cri : Integer [0..1] Component reusability index for a
ProductDesign.

ResCoM concept [1]

pmi : Integer [0..1] Product modularity index for a
ProductDesign.

pui : Integer [0..1] Product upgradability index for a
ProductDesign.

ResCoM concept [1]

pri : Integer [0..1] Product reusability index for a
ProductDesign.

epi : Integer [0..1] EoL potential index for a
ProductDesign.

pictureUrl : String [0..1] The URL of an image of a
ProductDesign. This URL must be
accessible from the reporting services
server.

Integration with Granta BOM
Analyzer

mci : Integer [0..1] Material criticality index for a Material. ResCoM concept [1]

 mri : Integer [0..1] Material reusability index for a
Material.

recycleContent : Real [0..1] The percentage of recycled Material in
the current supply. If omitted then 0%
is assumed.

Integration with Granta BOM
Analyzer

 14

2.4 ResCoM_Requirements
The ResCoM_Requirements model in Figure 2-3 captures mainly the different types of ResCoM
product specific requirements, and the traceability and structure of the requirements.

Figure 2-3. ResCoM_Requirements model as a SysML block diagram

Note that a block can participate in several SysML block definition diagrams for different
purposes, e.g.”DesignItem” block which has been shown in the previous diagram also appears
in this diagram to represent relationships with other blocks, and it will also appear in other
diagrams in the latter part of this document.

The ResCoM_Requirements model concepts, relationships and properties are described in
Table 2.

 15

Table 2. The concepts, relationships and properties of the ResCoM_Requirements model
Block / Relationship Description Concept reference

Block:

Requirement

A statement that identifies a necessary
capability, function, characteristic, or
quality of a target item, e.g. a product or
service.

A Requirement is used to uniquely identify
a requirement.

• ResCoM: ResCoM product
specific requirements [12]

• PLCS: Requirement [2]
• System Engineer :

Requirement [7]

Relationship:

type

A composition represents that one
Requirement defines one Value Type.

Block:

RequirementTracing

A RequirementTracing shows tracing from
one Requirement to another.

• ResCoM: essential and
critical factors [D4.1 and
D4.2]

• PLCS: TracingRelationship,
Effectivity and
EffectivityAssignment [2]

Relationship:

tracesFrom, tracesTo

An association represents tracing
relationship from one Requirement
(TracesFrom) to another Requirement
(TracesTo).

Block:

RequirementStructure

Relationship between a parent and child
Requirement.

• ResCoM: ResCoM product
specific requirements [12]

• PLCS:
RequirementCollection-
Relationship, Effectivity and
EffectivityAssignment [2]

Relationship:

child, parent

Associations between one Requirement
and its constituent lower level
Requirement.

Block:

RequirementTarget

A RequirementTarget is used to relate a
Requirement to DesignItem which are
affected by the Requirement.

• ResCoM: ResCoM product
specific requirements [12]

• PLCS:
RequirementAssignment,
Effectivity and
EffectivityAssignment [2]

Relationship:

requirement

An association represents zero or more
RequirementTarget is associated with one
Requirement.

Block:

DesignItem

An abstract class. The identification of a
design, a generalization of the design
objects. It is a collector of data common to
all revisions of the DesignItem.

• PLCS: Product [2]

Relationship:

design

An association represents one
RequirementTarget targets to one
DesignItem.

Block:

Verification

A Verification is an objective assertion that
a claim that a requirement is satisfied by a
particular item is.

Verification ensures that the specified
requirements have been met. Verification
uses the methods of Test, Analysis,
Inspection, Demonstration, and Similarity.

• PLCS: Verification [2]

 16

Relationship:

satisfiedBy

An association represents zero or more
Verification claims that a Requirement is
satisfied by a particular DesignItem.

Relationship:

verifies

An association represents zero or more
Verification claims that a Requirement is
satisfied by a particular Designitem has
been verified.

Block:

Evidence

An Evidence is a collector of items used
together to provide a single piece of
evidence within a Verification.

• PLCS: Evidence [2]

Relationship:

evidence

An association represents zero or more
Evidence supports one Verification.

Property Description Comment

Value Type

Business requirements Requirements on the service models that
supports product returns to OEMs

ResCoM concept [1]

Product design requirements Requirement on the product design for
multiple lifecycles

Supply chain requirements Requirements on integrating forward and
reverse supply chains solutions that can
handle the dynamics of multiple lifecycles.

Information technology requirements Requirement on the collaborative product
lifecycle management software platform
supporting multiple lifecycles.

Parts

ids : Identifier [1..*] A set of Identifiers for the Requirement
/DesignItem/Verification/Evidence.

An identifier provides the
identifying code for the
product data.

Values

name : String [0..1] A name provides the identifying name in
terms of String for the Requirement
/DesignItem/Verification/Evidence.

description : String [0..1] A set of text based descriptions of the
Requirement
/DesignItem/Verification/Evidence.

version : String [1..*] A version identifies a version of a
Requirement/DesignItem.

A version serves as the
collector of the data
characterizing a realizable
object in various application
contexts.

startDate : date_time [0..1] A date is assigned to a
relationship/structure between two objects
showing when this relationship/structure
begins.

Relationship/structure
between:

• Requirement (TracesFrom)
and Requirement
(TracesTo)

• Requirement and its sub
requirement

• Requirement and its target
DesignItem

endDate : date_time [0..1] A date is assigned to a
relationship/structure between two objects
showing when this relationship/structure
end up.

 17

optimumNumberOfLifecycles : integer
[1..*]

The predefined optimum number of
lifecycles for a DesignItem.

• ResCoM concept [1]

2.5 ResCoM_InLife
The ResCoM_InLife model in Figure 2-4 covers the multiple lifecycles design, lifecycles
definition, predefined product structure of each lifecycle for a specific manufactured product i.e.
SerializedAsset.

Figure 2-4. ResCoM_InLife model as a SysML block diagram

The ResCoM_InLife model concepts, relationships and properties are presented in Table
3Table 3.

Table 3. The concepts, relationships and properties of the ResCoM_InLife model.

Block / Relationship Description Concept reference

Block:

SerializedAsset

A SerializedAsset identifies an individual
product that has been manufactured.

• PLCS: ProductAsRealized
[2]

Block:

SerializedAssetStructure

Relationship between a parent and child
SerializedAsset.

• PLCS:
RealizedAssemblyRelation-
ship, Effectivity and
EffectivityAssignment [2]

Relationship:

child, parent

Associations between SerializedAsset and
its constituent lower level SerializedAsset.

 18

Block:

ProductDesign

Specialization of DesignItem that collects
the definitional information of the versions
of a product.

• ResCoM:
Product/component
indexes [1]

• PLCS: Part [2]

Block:

BasedOn

A BasedOn is a relationship between a
ProductDesign, and the product that has
been made from the design, represented
by SerializedAsset.

• PLCS:
ProductDesignVersionTo-
Individual, Effectivity and
EffectivityAssignment [2]

Relationship:

design

An association represents that one
BasedOn basese on one ProductDesign.

Relationship:

serializedAsset

An association represents that one
BasedOn associating with one
SerializedAsset.

Block:

LifeRecord

The identification of a life record that
records each RCL a SerializedAsset has
gone through and the usage state
representing by value within this RCL.

• ResCoM: traceability of
each RCL [1]

• PLCS: Effectivity and
EffectivityAssignment [2]

Relationship:

records

A composition represents one
SerializedAsset defines zero or more
LifeRecord.

Block:

RCLElementToSerializedAsset

Relationship between a SerializedAsset
and its predefined structure in each RCL.

• PLCS:
BreakdownElementReali-
zation, Effectivity and
EffectivityAssignment [2]

Relationship:

serializedAsset

An association represents that one
RCLElementToSerializedAsset associating
with one SerializedAsset.

Block:

RCLDefinitionStructure

Relationship between a
ResourceConservativeLevelDefinition and
a RCLElement where RCLElement is
regarded as a child.

• PLCS:
PhysicalElementUsage,
Effectivity and
EffectivityAssignment [2]

Relationship:

lifecycleElement

An association represents that one
RCLElementToSerializedAsset associating
with one RCLDefinitionStructure.

Block:

RCLElement

A basic element of a
ResourcConservationLevelDefinition that
represents a physical sub part (module or
component) of RCP.

• ResCoM: Module [12]
• PLCS: PhysicalElement [2]

Relationship:

element

An association represents that one
RCLDefinitionStructure consists of at least
one RCLElement.

Block:

ResourceConservationLevelDefinition

Identification of RCL definitions i.e.
lifecycles definitions of a RCP.

• ResCoM: RCL [1]
• PLCS: PhysicalElement [2]

Relationship:

lifecycle

An association represents that in one RCL
there will be at least one
RCLDefinitionStructure.

Property Description Comment

Parts

 19

ids : Identifier [1..*] A set of Identifiers for the SerializedAsset/

ResourceConservationLevelDefinition/RCL
Element.

An identifier provides the
identifying code for the
product data.

predefiendPeriods: LifecyclePeriod
[1..*]

Predefined length (time or performance) of
a RCL, which is a property of RCL.

The hidden block
“LifecyclePeriod” which is
shown in Figure 2-2
ResCoM_ProductRCBreak
down_and_Design model.

references

material :Material[1..*] Specialization of DesignItem that collects
the definitional information of the versions
of a non-countable material.

The hidden block “Material”
which is shown in Figure 2-
2
ResCoM_ProductRCBreak
down_and_Design model.

substance : Substance [0..*] Specialization of DesignItem. The hidden block
“Substance” which is
shown in Figure 2-2
ResCoM_ProductRCBreak
down_and_Design model.

Values

name : String [0..1] A name provides the identifying name in
terms of String for the SerializedAsset/

ResourceConservationLevelDefinition/RCL
Element/LifeRecord.

description : String [0..1] A set of text based descriptions of the
SerializedAsset/

ResourceConservationLevelDefinition/RCL
Element.

version : String [1] A version identifies a version of a
SerializedAsset i.e. a manufactured RCP.

A version serves as the
collector of the data
characterizing a realizable
object in various application
contexts.

version : String [1..*] A version identifies a version of
ResourceConsercationLevelDefinition/RCL
Element.

startDate : date_time [0..1] A date is assigned to a
relationship/structure between two objects
showing when this relationship/structure
begins.

Relationship/structure
between:

• ProductDesign and
SerializedAsset

• SerializedAsset and its sub
parts

• SerializedAsset and its
property LifeRecord

• SerializedAsset and
RCLDefinitionStructure

• RCLElement and
ResourceConservation-
LevelDefinition

endDate : date_time [0..1] A date is assigned to a
relationship/structure between two objects
showing when this relationship/structure
end up.

value : Real [1] A LifeRecord is specified by a value.

cri : Integer [0..1] Component reusability index for a
ProductDesign.

ResCoM concept [1]

pmi : Integer [0..1] Product modularity index for a
ProductDesign.

 20

pui : Integer [0..1] Product upgradability index for a
ProductDesign.

pri : Integer [0..1] Product reusability index for a
ProductDesign.

epi : Integer [0..1] EoL potential index for a ProductDesign.

pictureUrl : String [0..1] The URL of an image of a ProductDesign.
This URL must be accessible from the
reporting services server.

Integration with Granta BOM
Analyzer

2.6 ResCoM_Activities_and_Methods model
The ResCoM_Activity_and_Methods model in Figure 2-5 covers activity for closing the loop of
the product system and supporting multiple lifecycles of the RCP, including predefined activity
methods for supporting first manufacturing for a RCP (design) and operational value recovery
methods in each of its end of lifecycle, plan and execute the manufacturing and operational
value recovery for a specific product individual (SerializedAsset) throughout its lifecycles.

 21

Figure 2-5. ResCoM_Activities_and_Methods model a SysML block diagram

The ResCoM_Activities_and_Methods model concepts, relationships and properties are
presented in Table 4.

Table 4. The concepts, relationships and properties of the
ResCoM_Activities_and_Methods model

Block / Relationship Description Concept reference

Block:

SerializedAsset

A SerializedAsset identifies an individual
product that has been manufactured.

• PLCS: ProductAsRealized
[2]

Block:

Activity

An abstract class. An Activity is an action
or a set of actions that consume time and
resources and whose performance is
necessary to achieve, or contribute to, the
realization of one or more outcomes.

• ResCoM: Production
activities, supply chain
activities [12]

• PLCS: Activity [2]

Relationship:

outputs

An association represents that zero or
more SerializedAsset is the input to one
Activity.

Relationship:

inputs

An association represents that zero or
more SerializedAsset is the output to one
Activity.

Relationship:

performedOn

An association represents that one Activity
is performed on zero or one
SerializedAsset.

Block:

ActivityStructure

Relationship between a parent and child
Activity.

• PLCS: ActivityRelationship
[2]

Relationship:

child, parent

Associations between Activity and its
constituent lower level Activity.

Block:

PerformedActivity

A PerformedActivity is an Activity that has
started but not necessarily finished.

• PLCS: ActivityActual [2]

Block:

PlannedActivity

A PlannedActivity is an Activity which,
when first defined, has yet to start and so
is being planned. It is a record of the intent
to perform an Activity.

• PLCS: ActivityPlanned [2]

Relationship:

Specialization

Note: a child block will inherit any
properties that its parent block has,
but may have additional properties
that make the child block special.

A specialization where Activity is parent
block and PerformedActivity and
PlannedActivity are child blocks. It
represents that one Activity could have two
types which are PerformedActivity and
PlannedActivity.

Block:

ActivityMethod

An ActivityMethod is a specific way to
carry out an Activity.

• PLCS: ActivityMethod [2]

Relationship:

type

A composition represents that one
ActivityMethod defines one Value Type.

 22

Relationship:

activityMethod

Associations between Activity and
ActivityMethod i.e. the specific way to
carry out the Activity.

Block:

LifecyclePlan

A LifecyclePlan is a specialization of
ActivityMethod predefines a set of activity
methods for supporting a RCP (design)
from first manufacturing to operational
value recovery in each end of its lifecycle.

• ResCoM: Right time, Right
quality, Right Quantity [12]

• PLCS: Scheme [2]

Block:

Method

A TaskMethod is a specialization of
ActivityMethod. It is a specification of work.

• PLCS: TaskMethod [2]

Relationship:

Specialization

Note: a child block will inherit any
properties that its parent block has,
but may have additional properties
that make the child block special.

A specialization where ActivityMethod is
parent block and LifecyclePlan and
Method are child blocks. It represents that
one ActivityMethod could have two types
which are LifecyclePlan and Method.

Relationship:

methods

An association represents that one
LifecyclePlan is associated with at least
one Method.

Block:

Property

A Property is the record of an attribute or
characteristic that is applicable to
something.

• PLCS: Property [2]

Relationship:

properties

An association between Method and
Property represents that one Method has
zero or more Property.

Relationship:

properties

An association between Activity and
Property represents that one Activity has
zero or more Property.

Auxiliary Block:

MethodItem

A MethodItem is an abstract generalization
of instances.

• PLCS:
TaksAssignmentSelect [2]

Relationship:

assignedTo

An association represents that one Method
is assigned to zero to more MethodItem.

Relationship:

Specialization

Note: a child block will inherit any
properties that its parent block has,
but may have additional properties
that make the child block special.

A specialization where MethodItem is
parent block and RCLElement,
ResourceConservationLevelDefinition,
DesignItem and RCLDefinitionStructure
are child blocks. It represents that one
MethodItem could have four types which
are RCLElement,
ResourceConservationLevelDefinition,
DesignItem and RCLDefinitionStructure.

Block:

RCLElement

A basic element of a
ResourcConservationLevelDefinition that
represents a physical sub part (module or
component) of RCP.

• ResCoM: Module [12]
• PLCS: PhysicalElement [2]

Block:

RCLDefinitionStructure

Relationship between a
ResourceConservativeLevelDefinition and
a RCLElement where RCLElement is
regarded as a child.

• PLCS:
PhysicalElementUsage,
Effectivity and
EffectivityAssignment [2]

Relationship:

element

An association represents that one
RCLDefinitionStructure consists of at least
one RCLElement.

 23

Block:

ResourceConservationLevelDefinition

Identification of RCL definitions i.e.
lifecycles definitions of a RCP.

• ResCoM: RCL [1]
• PLCS: PhysicalElement [2]

Relationship:

lifecyle

An association represents that in one RCL
there will be at least one
RCLDefinitionStructure.

Block:

DesignItem

The identification of a design, a
generalization of the design objects. It is a
collector of data common to all revisions of
the DesignItem.

• PLCS: Product [2]

Block:

ProductDesign

Specialization of DesignItem that collects
the definitional information of the versions
of a product.

• ResCoM:
Product/component
indexes [1]

• PLCS: Part [2]

Block:

Material

Specialization of DesignItem that collects
the definitional information of the versions
of a non-countable material.

• ResCoM: Material indexes
[1]

• PLCS: Part [2]

Block:

Substance

Specialization of DesignItem. • ResCoM: Conformity to
legislation [12]

• PLCS: Part [2]

Relationship:

Specialization

Note: a child block will inherit any
properties that its parent block has,
but may have additional properties
that make the child block special.

A specialization where DesignItem is
parent block and ProductDesign, Material,
and Substance are child blocks. It
represents that one DesignItem could
have three types which are
ProductDesign, Material, and Substance.

Relationship:

material

An association represents one
ProductDesign is associated with at least
one Material.

Relationship:

substance

An association represents one
ProductDesign is associated with zero or
more Substance.

Block:

LifecyclePeriod

Predefined length (time or performance) of
a RCL, which is a property of RCL.

ResCoM: Predefined length
[9]

Relationship:

predefinedPeriods

A composition represents one
ResourceConservationLevelDefinition
defines at least one LifecyclePeriod.

Relationship:

trigger

A composition (LifecyclePeriod is the
composition of a LifecyclePlan) represents
one LifecyclePlan includes at least one
LifecyclePeriod which will trigger the
LifecyclePlan.

Relationship:

trigger

A composition (LifecyclePeriod is the
composition of a Method) represents one
Method includes zero or more
LifecyclePeriod which will trigger the
Method.

Property Description Comment

Value Type

Manufacturing RCL0 production ResCoM concept [12]

Distribution Distribution of RCP in its first lifecycle

 24

Collection Collection of RCP in each of its end of
lifecycle

Operational value recovery RCLi Production

Redistribution Distribution of RCP in its 2nd, 3rd… lifecycle

In service Maintenance during each lifecycle

Parts

ids : Identifier [1..*] A set of Identifiers for the SerializedAsset/

Activity/LifecyclePlan/Method/Property/
RCLElement
/ResourceConservationLevelDefinition/
DesignItem.

An identifier provides the
identifying code for the
product data.

records : LifeRecord [0..*] The identification of a life record that
records each RCL a SerializedAsset has
gone through and the usage state
representing by value within this this RCL.

The hidden block
“LifeRecord” which is
shown in Figure 2-4
ResCoM in life model.

Values

name : String [0..1] A name provides the identifying name in
terms of String for the SerializedAsset/

Activity/LifecyclePlan/Method/
RCLElement
/ResourceConservationLevelDefinition/
DesignItem.

description : String [0..1] A set of text based descriptions of the
SerializedAsset/

Activity/LifecyclePlan/Method/
RCLElement
/ResourceConservationLevelDefinition/
DesignItem.

version : String [1] A version identifies a version of a
SerializedAsset/LifecyclePlan/Method.

A version serves as the collector of the
data characterizing a realizable object in
various application contexts.

A version serves as the
collector of the data
characterizing a realizable
object in various application
contexts.

version : String [1..*] A version identifies a version of
RCLElement
/ResourceConservationLevelDefinition/
DesignItem.

startDate : date_time [0..1] A date is assigned to a
relationship/structure between two objects
showing when this relationship/structure
begins or a date is assigned to start an
activity.

Relationship/structure
between:

• Activity and its sub parts
• Start and end dates of an

Activity
• RCLElement and

ResourceConservation-
LevelDefinition

endDate : date_time [0..1] A date is assigned to a
relationship/structure between two objects
showing when this relationship/structure
end up, or a date is assigned to end up an
activity.

optimumNumberOfLifecycles : integer
[1..*]

The optimum number of lifecycles of
defined for a DesignItem.

ResCoM concept [1]

unit : String [1] A Property/LifecyclePeriod is specified by
a value and a unit.

value : Real [1]

 25

cri : Integer [0..1] Component reusability index for a
ProductDesign.

ResCoM concept [1]

pmi : Integer [0..1] Product modularity index for a
ProductDesign.

pui : Integer [0..1] Product upgradability index for a
ProductDesign.

pri : Integer [0..1] Product reusability index for a
ProductDesign.

epi :Integer [0..1] EoL potential index for a ProductDesign.

pictureUrl : String [0..1] The URL of an image of a ProductDesign.
This URL must be accessible from the
reporting services server.

Integration with Granta BOM
Analyzer

mci : Integer [0..1] Material criticality index for a Material. ResCoM concept [1]

 mri : Integer [0..1] Material reusability index for a Material.

recycleContent : Real [0..1] The percentage of recycled material in the
current supply. If omitted then 0% is
assumed.

Integration with Granta BOM
Analyzer

 26

3 Conclusion

This document describes the ResCoM initial standard data model which was modelled by
starting from industrial proven life cycle standards for product life cycle information management
(ISO 10303 233 and 239), and then semantics from the closed loop, multi life cycle area were
added based on the ResCoM product specific requirements collected from anterior ResCoM
work.

The initial standard data model is the basis of the ResCoM collaborative software platform
development, including development of ResCoM Web API, and Share-A-space solution for
managing product having multiple lifecycles. The data model will be validated using Share-A-
space and industrial test cases.

Another intended uses of the initial standard data model is to provide a basic framework as a
support for collecting further information on multiple lifecycles product management or
requirements on the collaborative software platform from other three pillars (i.e. product design,
business model and supply chain), including but not limit on collecting the following information
for extending and refining the data model on the following work:

• Collaborative Software Platform

o What IT tools will be used for analysis and decision making in product design,
business model, and supply chain.

o How will the tools be used?
o What inputs are needed for doing the analysis and what outputs can be gotten?

• Product requirement management
o Definition of the generic ResCoM product specific requirements (from D2.3)
o Definition of the ResCoM product specific requirements for each of the OEMs’ case

study (from D2.3)
o Hierarchy of the requirements
o Interactions among the requirements (from D4.1 and D4.2)
o Requirements verification

• Product configuration (from WP3 and WP4)
o Product BOM (engineering BOM, manufacturing BOM, maintenance BOM etc.)
o Definition of configuration management activities over the complete multiple

lifecycles
o Compatibility of the modular/components

• Product traceability (from WP3 and WP4)
o Definition of the multiple lifecycles of a product design including Product level,

modular level, component level, and material level.
o How to identify an individual product, and on what the level that the product should

be kept tracing?
o How to capture of feedback on the usage and condition of a product, and who owns

the data and who has right of access?
• Value creation and recovery activities, processes, resources, distribution channels,

partners, supplier and customers

 27

Modelling, refining, validating and extending the data model will be an iterative process and
when final closed loop information management requirements are set, the profile will be updated
and be documented as D5.2 Final standard data model to be ready for communicate with the
OASIS and ISO standards.

This project has received funding from the European Union’s Seventh Programme for research,
technological development and demonstration under grant agreement No 603843

References

[1] ResCoM DOW (2013) 603843_DOW

[2] ISO International Organization for Standardization (2012) ISO 10303-233:2012. Industrial
automation systems and integration – Product data representation and exchange – Part 233:
Application protocol: Systems engineering. Geneva.

[3] Dunford, J., Bergtröm, P. (2007). Standards-based PLM: Re-engineering the Aftermarket with
PLCS Part 2 Technologies and Deployments. Eurostep and John Stark Associates Technology
White Paper

[4] PLCS Introduction http://www.plcs.org/plcslib/plcslib/. Accessed 30 Sep 2014

[5] PLCS activity model http://www.plcs.org/plcslib/plcslib/sys/activity_model_index_base.html.
Accessed 30 Sep 2014.

[6] PLCS information model
http://www.plcs.org/plcslib/plcslib/data/PLCS/psm_model/model_base.html. Accessed 30 Sep
2014.

[7] ISO International Organization for Standardization (2012) ISO 10303-239:2012 Ed. 2.
Industrial automation systems and integration – Product data representation and exchange –
Part 239: Application protocol: Product life cycle support. Geneva.

[8] Asif FMA (2011) Resource conservative manufacturing: a new generation of manufacturing.
Licentiate thesis, KTH Royal Institute of Technology.

[9] Rashid, A., et al., (2013). Resource Conservative Manufacturing: an essential change in
business and technology paradigm for sustainable manufacturing. Journal of Cleaner Production

[10] Fraunhofer Project Group Process Innovation (IPA-BT) (2014) ResCoM deliverable 2.1:
Product specific requirements-current practices.

[11] Technische Universiteit Delft (2014) ResCoM deliverable 2.2: Product specific
requirements-state-of-the-art.

[12] INSEAD (2014) ResCoM deliverable 2.3: Product specific requirements-ResCoM.

[13] IDEAL&CO Explore, DUT (2014) ResCoM deliverable 3.2: Best design practices.

[14] Ye, X., Zhang, X. (2013), PLM for Multiple Lifecycle Product: Concepts, terminologies,
processes for collaborative information management, Master Thesis, KTH Royal Institute of
Technology, http://www.diva- portal.org/smash/get/diva2:693889/FULLTEXT01.pdf

[15] PLCS concept model
http://www.plcs.org/plcslib/plcslib/data/PLCS/concept_model/model_base.html. Accessed 30
Sep 2014.

This project has received funding from the European Union’s Seventh Programme for research,
technological development and demonstration under grant agreement No 603843

Annex - SysML block definition diagram
introduction

Contents

1 Basic modelling .. 3

2 Adding more detail to blocks .. 5

2.1 Block property types ... 5
3 Adding more detail to relationships .. 6

3.1 Specialization and generalization ... 6
3.2 Aggregation and composition ... 8
3.3 Dependencies ... 9

4 Summary .. 9

References .. 11

 2

This project has received funding from the European Union’s Seventh Programme for research,
technological development and demonstration under grant agreement No 603843

1 Basic modelling
There are two basic elements that make up a block definition diagram, which are the ‘block’ and
the ‘relationship’. A ‘block’ represents a type of ‘thing’ that exists in the real world and, hence,
should have a very close connection to reality. Figure 1 shows two very simple blocks. Blocks
are represented graphically by rectangles in the SysML and each must have a name, which is
written inside the rectangle. In order to understand the diagram, it is important to read the
symbols. The diagram here shows that two blocks exist: ‘Block 1’ and ‘Block 2’. This is one of
the

Figure 1. Representing blocks

The upper block has the word ‘block’ in chevrons (’«block»’) in it, which signifies that this block is
stereotyped. As every block in a block definition diagram contains this same adornment, it is
usually left off the diagram, as shown in the lower block. For the purposes of this introduction,
the «block» stereotype will be omitted from most diagrams.

Figure 2. Representing a relationship

Figure 2 shows how to represent a relationship between two blocks. This particular relationship
is known as an association and is simply ageneral type of relationship that relates one or more
blocks. The association is represented by a line that joins two blocks, with the association name
written somewhere on the line. This diagram reads: two blocks exist: ‘Block 1’ and ‘Block 2’ and
‘Block 1’ associates ‘Block 2’.

Figure 3 shows two more examples that are based on real life. The top part of the diagram
reads: there are two blocks: ‘Dog’ and ‘Cat’ where ‘Dog’ chases ‘Cat’. Likewise, the lower part of
the diagram reads: there are two blocks: ‘Cat’ and ‘Mouse’ where ‘Cat’ eats ‘Mouse’. Figure 3 is
actually ambiguous, as it could be read in one of two ways, depending on the direction in which
the association is read. Take, for example, the top part of the diagram: who is to say that the
diagram is to be read ‘Dog’ chases ‘Cat’ rather than ‘Cat’ chases ‘Dog’, as it is possible for both
cases to be true. Therefore, there is some ambiguity as the diagram must be read in only one
direction for it to be true; thus, a mechanism is required to indicate direction.

 4

Figure 3. Examples of blocks and associations

The simplest way to show direction is to placea direction marker on the association that will
dictate which way the line should be read, as shown in the top part of Figure 4. The diagram
now reads ‘Dog’ chases ‘Cat’ and definitely not ‘Cat’ chases ‘Dog’ and is thus less ambiguous
than Figure 3.

The second way to show direction is to define a ‘role’ on each end of the association, as
shown in the middle part of Figure 4. In this case, the two roles that have been defined are
‘chaser’ and ‘chasee’, which again eliminates the ambiguity that existed in Figure 3.

The lower part of Figure 4 introduces a new association called ‘dislikes’. This time, however, the
lack of direction is intentional, as both statements of ‘Dog’ dislikes ‘Cat’ and ‘Cat’ dislikes ‘Dog’
are equally true. Therefore, when no direction is indicated, the association is said to be
bidirectional.

Figure 4. Showing direction

There is no concept of the number of cats and dogs involved in the chasing of the previous
diagrams. Expressing this numbering is known as multiplicity (Figure 5), which is illustrated in
Figure 6. The top part of Figure 6 shows that each ‘Dog’ chases one or more ‘Cat’.

Figure 5. Multiplicity

If no number is indicated, as in the case of the ‘Dog’ end of the association, it is assumed that
the number is ‘one’. Although the number is one, it does not necessarily indicate that there is
only one dog, but rather that the association applies for each dog. The multiplicity at the other
end of the ‘chases’ association states ‘1..*’, which means‘one or more’ or some where between
one and many. The lower part of the diagram is read as: one or more ‘Dog’ chases one or more

 5

‘Cat’. This could mean that a single dog chases a single cat, a single dog chases any number or
a herd of cats, or that an entire pack of dogs is chasing a herd of cats.

Figure 6. Showing numbers using multiplicity

2 Adding more detail to blocks
The block ‘Cat’ represented all cats that looked and behaved in the same way, but it is not
defined anywhere how a cat looks or behaves. This section examines how to add this
information to a block by using ‘properties’. For this example, suppose that we wish to
represent the features ‘age’, ‘weight’, ‘colour’ and ‘favourite food’ on the block ‘Cat’. These
features are represented on the block as ‘properties’ – one for each feature (Figure 7).

Figure 7. Properties of the block ‘Cat’

Properties are written in a box below the block name box. When modelling, it is possible to add
more detail at this point, such as the visibility of the property, type, default values and so forth.

The block ‘Cat’ is now fully defined for our purposes and the same exercise may be carried out
on any other blocks in the diagram in order to populate the model fully. It should also be pointed
out that the blocks may be left at a high level with no properties or operations. As with everything
in the SysML, use only as much detail as is necessary, rather than as much as is possible.

2.1 Block property types

Property is a structural feature of a block, there are three property types (see Figure 14):

• Part property: typed by a block
o Usage of a block in the context of the enclosing block
o E.g. right-front: wheel

• Reference property: typed by a block
o A part that is not owned by the enclosing block (not composition)
o E.g. logical interface between 2 parts

 6

• Value property: typed by value type
o Defines a value with units, dimensions, and probability distribution
o E.g. tirePressure:psi=30

3 Adding more detail to relationships
There are four types of relationship that will be discussed here: ‘association’, ‘specialization
and generalization’ ‘aggregation and composition’, and ‘dependency’. Many types of
relationship exist, but these three represent the majority of the most common uses of
relationships. Associations have already been introduced and shown to be a very general type
of relationship that relate together one or more block.

3.1 Specialization and generalization

‘Specialization’ refers to the case when a block is being made more special or is being refined in
some way. Specialization may be read as ‘has types’ whenever its symbol, a small triangle, is
encountered on a model. If the relationship is read the other way around, then the triangle
symbol is read as ‘is a type of’, which is a generalization.

Specialization is used to show ‘child’ blocks, sometimes referred to as ‘sub- blocks’, of a ‘parent’
block.

Figure 8. Life-form hierarchy

Figure 8 shows different types of life known to man. The top block is called ‘Life form’ and has
three child blocks: ‘Animal’, ‘Vegetable’ and ‘Mineral’, which makes ‘Life form’ the parent block.
Going down one level, it can be seen that ‘Animal’ has three child blocks: ‘Mammal’, ‘Fish’ and
‘Insect’. Notice now how ‘Animal’ is the parent block to its three child blocks, while still being a
child block of ‘Life form’.

The diagram may be read in two ways:

• from the bottom up: ‘Mammal’, ‘Fish’ and ‘Insect’ are types of ‘Animal’ – ‘Animal’,
‘Vegetable’ and ‘Mineral’ are all types of ‘Life form’;

• from the top down: ‘Life form’ has three types: ‘Animal’, ‘Vegetable’ and ‘Mineral’ – the
block ‘Animal’ has three types: ‘Mammal’, ‘Fish’ and ‘Insect’.

 7

In SysML terms, a child block will inherit any properties and operations that its parent block has,
but may have additional properties or operations that make the child block special. Figure 9
shows an expanded version of Figure 8 by adding some properties and operations to the blocks.
It can be seen that the block ‘Animal’ has three identifiable properties: ‘age’, ‘gender’ and
‘number of legs’. These properties will apply to all types of animal and will therefore be inherited
by their child blocks. That is to say that any child blocks will automatically have the same three
properties.

Figure 9. Example of inheritance

What makes the child block different or special and therefore an independent block in its own
right is the addition of extra properties or constraints on existing properties. The block ‘Fish’ has
inherited the three properties from its parent block (which are not shown), but has had an extra
property added that its parent block will not possess: ‘scale type’. This makes the child block
more specialized than the parent block. The block ‘Insect’ has no extra properties or operations
but has a constraint on one of its property values. The property ‘number of legs’ is always equal
to six, as this is in the nature of insects. Such a limitation is known in the SysML as a
‘constraint’. From a modelling point of view, it may be argued that the property ‘number of legs’
should not be present in the block ‘Animal’, since it is not applicable to fish. This is fine and there
is nothing inherently wrong with either model except to say that it is important to pick the most
suitable model for the application at hand. Remember that there are many correct solutions
to any problem, and thus people’s interpretation of information may differ. By the same
token, it would also be possible to define two child blocks of ‘animal’ called ‘male’ and ‘female’,
which would do away with the need for the property ‘gender’ as shown in Figure 10.

Figure 10. Another way to model gender

Which approach is the better of the two, the one shown in Figure 9 or the one shown in Figure
10? Again,it is necessary to pick the most appropriate visual representation of the
information and one that you, as the modeller, are comfortable with.

 8

3.2 Aggregation and composition

The second type of relationship is a special type of association that allows assemblies and
structures to be modelled and is known as aggregation.

Figure 11. Example of aggregation

Figure 11 provides an example of aggregation. Aggregation is shown graphically in the SysML
by a diamond or rhombus shape and, when reading the diagram, is read by saying ‘is made up
of’. Starting from the top of the diagram, the model is read as: ‘Cat’ wears ‘Collar’. The direction
is indicated with the small arrow and there is a one-on-one relationship between the two blocks.
The multiplicity here is implied to be one to one as there is no indication. The ‘Collar’ is made up
of (the aggregation symbol) a ‘Bell’, a ‘Belt’ and a ‘Buckle’. The ‘Bell’ is on the ‘Belt’ and the
‘Buckle’ is on the ‘Belt’. The ‘Bell’ is made up of (the aggregation symbol) a ‘Clasp’, a ‘Donger’
and a ‘Sphere’.

There is also a second special type of association that shows an aggregation style relationship,
known as composition. The difference between composition and aggregation is subtle but very
important and can convey much meaning. The simplest way to show this difference is to
consider an example, as shown in Figure 12.

From the model, there are three types of ‘Weapon’: ‘Foil’, ‘Epée’ and ‘Sabre’. Each weapon is
made up of a ‘Handle’, a ‘Pommel’, a ‘Blade’ and a ‘Guard’. An aggregation is made up of
component parts that may exist in their own right. It is possible to buy or make any of the
components under the block ‘Weapon’, as they are assembled into the completed block
‘Weapon’. The block ‘Blade’, an composition, however, has three components that cannot
exist independently of the block ‘Blade’. This is because a fencing blade is a single piece of
steel that is composed of three distinct sections. For example, there is no such thing as a
‘Foible’, since it is an inherent part of the ‘Blade’ rather than being an independent part in its own
right. Of course, any of these blocks may have their own properties and/or operations, even
when used as part of the composition relationship.

 9

Figure 12. Example of the difference between composition and aggregation

3.3 Dependencies

A dependency is used to show that one block is dependent on another. This means that a
change in one block may result in a change in its dependent block. A dependency is
represented graphically by a dashed line with an arrow on the line end. For example, consider
the simple diagram of Figure 13.

Figure 13. A simple dependency

In this example, any change to block ‘B’ will result in a change to block ‘A’. By their very nature,
dependencies are quite weak relationships and really need to be further adorned using
stereotypes to add any real meaning. Many diagrams use the dependency in conjunction with
stereotypes, such as the use case diagram and the requirements diagram.

4 Summary

An overview of the elements of the SysML block definition diagram is summarized as Figure 14.
A system typically has a number of SysML block definitioan diagrams – not all classes (i.e.
blocks) are inserted into a single class diagram. A class (i.e. block) can have multiple levels of
meaning and participate in several class diagrams.

 10

Figure 14. An overview of the elements of the SysML block definition diagram

This project has received funding from the European Union’s Seventh Programme for research,
technological development and demonstration under grant agreement No 603843

References

[1] Jon Holt and Simon Perry. (2008) SysML for Systems Engineering. The Institution of
Engineering and Technology, London, United Kingdom.

